4 research departments
750 employees
45 nationalities
55 research teams
16 ERC laureates
260 publications per year
24000 m² lab area

Support us through

Fondation universite de Strasbourg

Communication Service

Tél. +33(0) 3 88 65 35 47

Quick Links

Science & society

Key figures 2014

11 ERC grants
16 prizes and distinctions
3 public events
23 major scientific news

Scientific news

The 3-dimensional transcription film

The structure of the transcription factor TFIID obtained after image analysis is represented in yellow on an electron cryomicroscopy image background, showing the frozen hydrated molecules in dark grey. The transcription activator Rap1 (red) interacts with the factor TFIIA (blue) and contributes to forming a DNA loop (green).

TFIIA and the transactivator Rap1 cooperate to commit TFIID for transcription initiation

Papai G., Tripathi M.K., Ruhlmann C., Layer J.H., Weil P.A., Schultz P.

Nature June 17, 2010

June 17, 2010

Gene expression takes place in two stages: the transcription of DNA to RNA by an enzyme called RNA polymerase, followed by the translation of this RNA into proteins, whose behaviour affects the characteristics of each individual.

Transcription: a mechanism controlled in time and space
Transcription involves about fifty regulatory molecules that interact with each other to begin reading the gene at the right place and the right time. The slightest irregularity of one of these molecules disturbs the transcription. An understanding of the initiation and regulation mechanisms is essential in order to understand gene expression. The structural biology researchers at IGBMC are studying molecular structures to gain a better understanding of how they function. Patrick Schultz's team is particularly focusing on the architecture of the molecules involved in transcription and attempting to decode the mechanisms of their interactions.
An 'image-by-image' analysis
An analysis of the transcription complexes by electron cryomicroscopy allows a molecule to be observed in a hydrated state close to its natural state. Each photograph, taken using a microscope, shows thousands of specimens of the same molecule from different angles and at different instants in their reaction cycle. The statistical analysis of these images performed by Patrick Schultz's team revealed different conformations in three dimensions, which correspond to different stages of transcription initiation. 'We performed image-by-image sequencing and made a film of the initial stages of transcription,' says Schultz.
The factor TFIID, the main player in the transcription process
Patrick Schultz's team is interested in a complex protein that acts as an assembly platform in the initiation phase of transcription: the factor TFIID. Through interaction with the activator Rap1, bound upstream from the gene to be transcribed, it is attracted to the DNA and binds onto it. Combined with another factor, TFIIA, it changes conformation and allows the RNA polymerase to initiate transcription. The original aspect of this mechanism is based on the formation of a DNA loop, which allows the RNA polymerase to be positioned exactly at the start of the sequence of the gene to be transcribed.

Imprimer Envoyer

Université de Strasbourg

IGBMC - CNRS UMR 7104 - Inserm U 964
1 rue Laurent Fries / BP 10142 / 67404 Illkirch CEDEX / France Tél +33 (0)3 88 65 32 00 / Fax +33 (0)3 88 65 32 01 / directeur.igbmc@igbmc.fr